DOI: 10.1002/ejoc.200500554

Dimethyldioxirane and Acetone Are Not in Equilibrium

Klaus-Peter Zeller,*[a] Meike Kowallik,[a] and Paul Schuler[a]

Keywords: Dimethyldioxirane / D-labelling / ¹³C-labelling / Oxygen transfer

The potential transfer of an oxygen atom from dioxiranes to a ketonic carbonyl group is disproved by appropriate D- and ¹³C-labelling. As shown by ¹³C NMR spectroscopy bis(trideuteriomethyl) dioxirane and [carbonyl- 13 C]acetone are not in equilibrium with [D₆]acetone and [3-13C]dimethyldioxir-

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005)

Introduction

Derivatives of dioxirane progressed during the last decades from laboratory curiosities to potent reagents for oxygen transfer to π -bonds, lone-pair electrons at heteroatoms and σ-bonds.^[1–4] The structural identity of the oxygentransferring species as dioxiranes was established by spectroscopic methods including 1H, 13C and 17O NMR analysis.[5-8] The sterically hindered dimesityldioxirane could even be isolated in the crystalline state and structurally characterized by X-ray crystallography.^[9] In contrast to the well-established and synthetically widely used epoxidation of olefinic double bonds by dioxiranes, the analogous oxygen transfer to a carbonyl π -bond with formation of a new dioxirane is unknown.

The problem of oxygen transfer between dioxiranes and ketones was briefly discussed by Murray in a fundamental review on the chemistry of dioxiranes.^[1] Some arguments were summarized speaking against the uptake of an oxygen atom from dioxiranes by ketones; however, no final conclusion was drawn. In this communication the possible oxygen transfer between dimethyldioxirane and acetone, which would establish a degenerated equilibrium between both species, is investigated by means of D- and ¹³C-labelling.

Results and Discussions

Solutions of dimethyldioxirane (1) in acetone are readily prepared by reaction of acetone with caroate (peroxymonosulfate) in water at pH = 7-8 (Scheme 1) followed by distillation under slightly reduced pressure (ca. 125 mbar).^[2] Dilution of the acetone solution of 1 with water and extraction with tetrachloromethane results in a higher concentration of the reagent.^[2] This procedure furnishes solutions of

E-mail: kpz@uni-tuebingen.de

1 in CCl₄/acetone (ca. 2:1, v/v) in concentrations \geq $0.15 \text{ mol} \cdot L^{-1}$.

Scheme 1. Generation of dimethyldioxirane (1).

In Figure 1 (a) the ¹³C NMR spectrum of 1 prepared as described above is displayed. In good agreement with previous measurements in acetone, the ¹³C resonances for the ring carbon atom and the methyl groups are found at δ = 101.3 (102,^[7] 102.25,^[5] 102.3^[8]) ppm and 22.7 (22.5,^[7] 22.68, [5] 22.69[8]) ppm. The signal for the quaternary carbon atom is significantly shifted to higher field (ca 1 ppm) when acetone is largely replaced by tetrachloromethane as solvent. This may be attributed to a smaller degree of solvation of the highly dipolar 1^[1] in tetrachloromethane resulting in a chemical shift closer to the value of $\delta = 99.2$ ppm predicted by the IGLO approach for the isolated molecule at 0 K.^[8] The ¹³C NMR spectrum of bis(trideuteriomethyl)dioxirane (D₆-1) prepared analogously^[10] is given in Figure 1 (b). The chemical shift of the ring carbon atom is slightly moved to $\delta = 101$ ppm, whereas the value for the deuterated methyl groups exerts a stronger isotopic effect and is found as a septuplet at $\delta = 22.0$ ppm (${}^{1}J_{\rm C,D} = 19.3$ Hz). To ensure that the chemical shifts of the quaternary carbon atoms in 1 and D_6 -1 are clearly resolved when both species are present in solution a 100:1 mixture of [D₆]acetone and [carbonyl-13Clacetone (99% 13C) was subjected to the usual procedure for dimethyldioxirane generation. The ¹³C NMR spectrum of the resulting mixture of the dimethyldioxirane isotopomers D_6 -1 and 13 C-1 is presented in Figure 1 (c). The spectrum demonstrates that the signals for the ring carbon atom in D₆-1 ($\delta = 101.0 \text{ ppm}$) and $^{13}\text{C-1}$ ($\delta =$ 101.3 ppm) can be identified without doubt when both iso-

[[]a] Institut für Organische Chemie, Universität Tübingen, Auf der Morgensstelle 18, 72076 Tübingen, Germany Fax: + 49-7071-29-5076

topomers coexist. The 13 C resonances of the geminal methyl groups in D₆-1 and 13 C-1 appear expectedly as septuplet at $\delta = 22.0$ ppm and as doublet at $\delta = 22.7$ ppm ($^{1}J_{\text{C,C}} = 46.2$ Hz). Due to a concentration ratio of [13 C-1]/[D₆-1] = 10^{-2} , the doublet for the unlabelled methyl groups in 13 C-1 can only be seen after prolonged accumulation [inset in Figure 1 (c)].

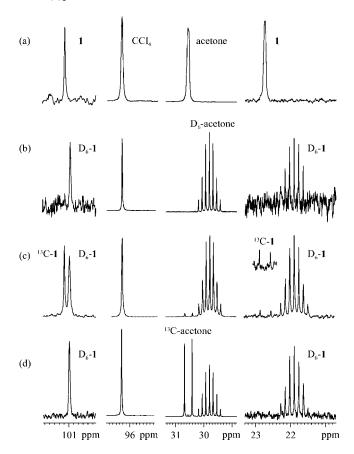


Figure 1. 13 C NMR spectroscopic data of solutions of dimethyldioxirane (1) (a), bis(trideuteriomethyl)dioxirane (D₆-1) (b), a 100:1 mixture of D₆-1 and [3- 13 C]dimethyldioxirane (13 C-1) (c), and a mixture of 550 μ L of D₆-1 (ca. 0.2 mol·L⁻¹) and 50 μ L of [carbonyl- 13 C]acetone (d) in CCl₄. The solvent CCl₄ is used as internal reference (δ = 96.3 ppm). The 13 C signals of the carbonyl group in acetone, [D₆]acetone and [carbonyl- 13 C]acetone are not shown.

To test the possible transfer of an oxygen atom from bis-(trideuteriomethyl)dioxirane (D_6 -1) to acetone (Scheme 2), 50 µL of [carbonyl- 13 C]acetone was added to a ca. 0.2 M solution of D_6 -1 in tetrachloromethane/[D_6]acetone (550 µL) at 4 °C. The 13 C NMR spectrum of this mixture exhibits the 13 C resonances of D_6 -1, [D_6]acetone and [13 C]acetone; however, the 13 C resonance for the labelled ring carbon atom of 13 C-1 at δ = 101.3 ppm is absent [Figure 1 (d)]. Repeated measurements of the sample kept at 4 °C for 4 d[11] produced identical spectra as shown in Figure 1 (d). Finally, the sample was warmed up to room temperature, kept at this temperature for 10 h and measured again. Except for some decrease in the signal-to-noise ratio[11] which could be balanced by prolonged accumulation, no significant changes in the spectral appearance could be noted, in particular, the signal for the ¹³C-enriched ring carbon atom of ¹³C-1 remained absent.

Scheme 2. Exclusion of oxygen transfer from bis(trideuteriomethyl) dioxirane (D₆-1) to [carbonyl- 13 C]acetone (\bullet = 13 C).

In conclusion, the NMR experiments presented above demonstrate that [carbonyl- 13 C]acetone and bis(trideuteriomethyl)dioxirane (D₆-1) are not in equilibrium with [3- 13 C]-dimethyldioxirane (13 C-1) and [D₆]acetone.

Experimental Section

General: The 13 C NMR spectroscopic data were collected with a Bruker AMX 600 spectrometer by single pulse excitation with proton decoupling (flip angle 30°, delay time 5 s, acquisition time 852 ms) at a temperature of 4 °C. The number of scans varied between 512 (1) and 122880 (mixture of 13 C-1 and D₆-1). Solutions of dimethyldioxirane (1) in CCl₄ containing some acetone were prepared as described in refs.^[2,4]

Bis(trideuteriomethyl)dioxirane (D₆-1): Solutions of bis(trideuteriomethyl)dioxirane (D_6 -1) in CCl₄ containing some [D_6]acetone were prepared in a microapparatus disigned for diazomethane generation from Diazald® (Aldrich). The flask was charged with [D₆]acetone (5 mL), 4·10⁻⁴ M aqueous Na₂EDTA (6.6 mL) and sodium hydrogencarbonate (1.51 g, 17.97 mmol). To the well-stirred mixture Oxone® (2KHSO₅·KHSO₄·K₂SO₄, 3.13 g, 5.08 mmol) was added in 5 portions in intervals of 3 min at 5-10 °C. After the last addition, the Dewar flask of the microapparatus was filled with dry ice/acetone and the pressure slowly lowered to 125 mbar. A mixture of D₆-1 and [D₆]acetone began to condense and was collected in a cooled (dry ice) receiver flask over ca. 40 min. The distillate (ca. 6 mL) was diluted with ice-cold water (10 mL) and extracted in 3 portions with precooled (-10 °C) CCl₄ (1.8 mL). The organic phase (ca. 2.5 mL) was dried with molecular sieves (4 Å) at -20 °C for 12 h. The titer was determined by reaction of an aliquot (0.5 mL) with excess thioanisole and electronic integration of the ¹H NMR signals of the CH₃ groups in the unreacted thioanisole, the sulfoxide and the sulfone. Typical concentrations of 0.15–0.2 mol·L⁻¹ in CCl₄/[D₆]acetone (ca. 2:1, v/v) were obtained. The ratio of CCl₄/ [D₆]acetone was roughly estimated by comparison of the corresponding NMR signal intensities with calibrating mixtures of the two solvents.

^[1] R. W. Murray, Chem. Rev. 1989, 89, 1187-1201.

^[2] W. Adam, C. R. Saha-Möller, C.-G. Zhao, Org. React. 2002, 61, 219–516.

^[3] W. Adam, C. M. Mitchell, C. R. Saha-Möller, O. Weichold, Struct. Bonding (Berlin) 2000, 97, 237–285.

^[4] K.-P. Zeller, M. Kowallik, P. Haiss, Org. Biomol. Chem. 2005, 3, 2310–2318.

^[5] R. W. Murray, R. Jeyaraman, M. Krishun Pillay, J. Org. Chem. 1987, 52, 746–748.

^[6] R. Mello, M. Fiorentino, O. Sciacovelli, R. Curci, J. Org. Chem. 1988, 53, 3890–3891.

^[7] L. Cassidei, M. Fiorentino, O. Sciacovelli, R. Curci, J. Org. Chem. 1987, 52, 699–700.

SHORT COMMUNICATION

- [8] W. Adam, Y.-Y. Chan, D. Cremer, J. Gauss, D. Scheutzow, M. Schindler, J. Org. Chem. 1987, 52, 2800–2803.
- [9] W. Sander, K. Schroeder, S. Muthusamy, A. Kirschfeld, W. Kappert, R. Boese, E. Kraka, C. Sosa, D. Cremer, J. Am. Chem. Soc. 1997, 119, 7265–7270.
- [10] A. L. Baumstark, C. J. McCloskey, *Tetrahedron Lett.* 1987, 28, 3311–3314.
- [11] In order to show that the dimethyldioxirane solutions prepared as described are sufficiently persistent to enable NMR mea-

surements over several days, the dependency of the concentration on time was measured. Starting with an initial concentration of 0.16 mol·L $^{-1}$, the following values (mol·L $^{-1}$ /d) were found for storage at 4 °C: 0.16/1, 0.14/4, 0.11/7. At room temperature the concentration dropped from 0.16 to 0.14 mol·L $^{-1}$ after 1 d.

Received: July 21, 2005

Published Online: October 27, 2005